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In order to check on a recent suggestion that local scale invariance �M. Henkel et al., Phys. Rev. Lett. 87,
265701 �2001�� might hold when the dynamics is of Gaussian nature, we have carried out the measurement of
the response function in the kinetic Ising model with Glauber dynamics quenched to TC in d=4, where
Gaussian behavior is expected to apply, and in the two other cases of the d=2 model quenched to TC and to
below TC, where instead deviations from Gaussian behavior are expected to appear. We find that in the d=4
case there is an excellent agreement between the numerical data, the local scale invariance prediction and the
analytical Gaussian approximation. No logarithmic corrections are numerically detected. Conversely, in the
d=2 cases, both in the quench to TC and to below TC, sizable deviations of the local scale invariance behavior
from the numerical data are observed. These results do support the idea that local scale invariance might miss
to capture the non-Gaussian features of the dynamics. The considerable precision needed for the comparison
has been achieved through the use of a fast new algorithm for the measurement of the response function
without applying the external field. From these high quality data we obtain a=0.27±0.002 for the scaling
exponent of the response function in the d=2 Ising model quenched to below TC, in agreement with previous
results.
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I. INTRODUCTION

The nonequilibrium dynamics of aging and slowly evolv-
ing systems is a topic of current and wide interest �1�. Much
work has been devoted to the understanding of two times
quantities such as the autocorrelation function C�t ,s�
= ���x� , t���x� ,s�� and the autoresponse function R�t ,s�
=����x� , t�� /�h�x� ,s�, where ��x� , t� is the order parameter at
the space-time point �x� , t�, h�x� , t� is the conjugate external
field and the averages are taken over the thermal noise and
the initial condition with t�s. The interest in the relation
between these two quantities dates back to the solution by
Cugliandolo and Kurchan �2� of the p-spin spherical model,
where they introduced the fluctuation-dissipation relation as
a measure of the distance from equilibrium. Furthermore,
this relation can encode important information on the struc-
ture of the equilibrium state �3�.

One among the simplest examples of systems exhibiting
aging and slow dynamics is a ferromagnetic model evolving
with a dissipative dynamics after a quench from an infinite
temperature to a final temperature T smaller than or equal to
the critical temperature TC. In both cases, the slow relaxation
entails the separation of the time scales. That is, when s
becomes large enough, the range of �= t−s can be divided
into the short ��s and the long ��s time separation, with
quite different behaviors in the two regimes. The first one is
the quasiequilibrium or stationary regime, where the two
time quantities are time translation invariant �TTI� and ex-
hibit the same behavior as if equilibrium at the final tempera-

ture of the quench had been reached. The second one is a
genuine off equilibrium regime, where aging becomes mani-
fest. A crucial point is how these two behaviors are matched.
The generic pattern for phase-ordering systems is that the
matching is multiplicative in the quences to TC and additive
in the quenches to below TC. The first one is well docu-
mented by analytical calculations. For the second one, al-
though the analytical evidence is less abundant, the additivity
is required on general grounds by the weak ergodicity break-
ing scenario �1�.

To be more specific, in the case of the quench to TC, using
the methods of the field theoretical renormalization group
�RG�, the evolution equations for C�t ,s� and R�t ,s� are ob-
tained by means of a series expansion around the Gaussian
fixed point �4–6�. The solution of these equations gives for
R�t ,s� the scaling form

R�t,s� = s−�1+a�FR�t/s� �1�

with the additional requirement that the scaling function
must be of the form

FR�x� = AR�x − 1�−�1+a�x�fR�x� , �2�

where a= �d−2+�� /z, d is the space dimensionality, � and z
are the usual static and dynamic critical exponents, � is the
initial slip exponent and limx→�fR�x�=1 �4,5�. A similar re-
sult is obtained for the correlation function �4–6�. The mul-
tiplicative structure becomes evident rewriting Eq. �1� as

R�t,s� = AR�t − s�−�1+a�gR�x� , �3�

where gR�x�=x�fR�x�.
In the case of the quench to T	TC, the above form is

replaced by the additive structure
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R�t,s� = Rst�t − s� + Rag�t,s� , �4�

where the first is the stationary contribution and the second
one is the aging contribution which obeys a scaling form of
the type �1�

Rag�t,s� = s−�1+a�hR�x� �5�

without the restriction �2� on the form of hR�x�.
In the latter case, all theoretical efforts have been direct

toward the determination of the exponent a and the scaling
function hR�x�. Keeping into account that the evolution is
controlled by the T=0 fixed point, which in no case is Gauss-
ian, the perturbative RG cannot be used and resorting to
uncontrolled approximations is unavoidable. Among these,
one of the most successful is the Gaussian auxiliary field
�GAF� approximation. The method was originally introduced
by Ohta, Jasnow, and Kawasaki �7� in the study of the scal-
ing behavior of the structure factor and has been subse-
quently applied also to the study of the response function
�8,9�. Recently, new results for R�t ,s� have been obtained by
Mazenko �10� using a perturbative expansion which im-
proves on the GAF approximation. Next to approximate
methods, there exist exact analytical results for two solvable
models: the one dimensional Ising model �11,12� and the
O�N� model in the large N limit for arbitrary dimensionality
�13�. Both solutions give for Rag�t ,s� the scaling form �5�,
with a=0 for the d=1 Ising model and a= �d−2� /2 for the
large N model.

Therefore, in the context of the quenches to below TC,
where a controlled theory is not available and numerical
simulations are very time demanding, it is of much interest
the conjecture put forward by Henkel et al. �14,15� that the
response function transforms covariantly under the group of
local scale transformations, both in the quenches to and to
below TC. The hypothesis of local scale invariance �LSI�,
then, implies that the multiplicative structure for R�t ,s�, as
obtained from RG arguments at TC, applies also in the
quenches to below TC. That is, from LSI follows that R�t ,s�
obeys Eq. �3�, both at and below TC, with the additional
prediction that

fR�x� � 1 �6�

holds not just asymptotically, but for all values of x, while
the amplitude AR and the exponents a and � remain unspeci-
fied. Hence, with the LSI hypothesis, the difference between
the quenches to TC and to below TC would be left only in the
values of the exponents a and �. This is actually verified by
the exact solution of the spherical model �13,16�. Con-
versely, from the GAF approximation and from the exact
solution of the d=1 Ising model follows �17�

fR�x� = ��x − 1�/x�1/z, �7�

which differs significantly from the above LSI prediction �6�.
In the case of the quench to T=TC, the validity of LSI has

been tested by Calabrese and Gambassi �18� by means of the

 expansion. Their field theoretical computation shows that
LSI holds up to the first order in 
=4−d, but deviations of
order 
2 are present. Motivated by this result, Pleimling and
Gambassi �PG� in a recent paper �19� have carried out a

careful numerical check of both LSI based and field theoret-
ical calculations in the Ising model quenched to TC, in d=2
and d=3. In particular, they have computed the integrated
global response to a uniform external field, finding �i� a dis-
crepancy between the LSI behavior and the data, �ii� that the
discrepancy is more severe in d=2 than in d=3, and �iii� that
the 
2 correction does not eliminate the discrepancy, but im-
proves on the LSI prediction. In this connection, Calabrese
and Gambassi �6� first and then PG made the remark that the
LSI prediction coincides with the Gaussian approximation,
thus accounting for the agreement between LSI and the so-
lution of the spherical model.

Following through this suggestion, one could anticipate
that the discrepancy between the LSI behavior and the results
of simulations should disappear in the quench to TC with d
=4, while it ought to get even worse in the quench to below
TC, independently of the dimensionality. Furthermore, in the
latter case the failure of LSI is expected to be not just in the
quantitative accuracy of the approximation, but also of a
structural character since the multiplicative form of R�t ,s� is
incompatible with the weak ergodicity breaking scenario.

In order to investigate these ideas, one can take advantage
of the efficient numerical tools made available by a new
generation of algorithms �20–22�. These algorithms are
based on the relation between R�t ,s� and unperturbed quan-
tities which, by speeding up the simulation, allow for the
measurement of R�t ,s�. In this paper, exploiting the algo-
rithm introduced by us �22�, we extend the investigation of
the Ising model carried out by PG to the two cases of the
quenches to TC with d=4 and to below TC with d=2. Rather
than computing the integrated response function for a global
quantity, as PG have done, we access directly the local re-
sponse function R�t ,s�, thus making the comparison between
the numerical data and Eq. �6�.

In the d=4 Ising model quenched to T=TC, after address-
ing the question of the universality of the exponent � �23�
and of the ratio TCAR /AC between the amplitudes of response
and correlation function �5,6,16,24�, we find an excellent
quantitative agreement between the numerical data and the
analytical results from the Gaussian model. In particular, we
find that both for R�t ,s� and C�t ,s� not only the scaling ex-
ponents, but also the scaling functions and the ratio TCAR /AC
are well accounted for in the Gaussian approximation. We
find that Eq. �6� holds and we conclude that LSI correctly
describes the critical quench of the d=4 Ising model. Con-
versely, in the quench of the d=2 Ising model to T=TC and
to T	TC, important deviations from LSI are observed. These
findings do bring support to the idea that the LSI principle is
some sort of zero order theory of Gaussian nature and con-
tradict previous statements �19,25� that no deviations from
LSI predictions are observed in the measurements of local
quantites.

The paper is organized as follows. In Sec. II we shortly
review existing results for C�t ,s� and R�t ,s�. In particular in
Secs. II A and II B we give the results from RG arguments
and from the Gaussian model, respectively, while in Sec. II C
we present a phenomenological picture for the quench to T
	TC. In Sec. III we outline the algorithm used in the simu-
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lations and in Sec. IV we present and discuss the numerical
results. Concluding remarks are made in the last section.

II. EXISTING RESULTS

We consider a system with a nonconserved scalar order
parameter ��x� , t� �model A in the classification of Hohenberg
and Halperin �26�� evolving with the Langevin equation

���x�,t�
�t

= −
�H���
���x�,t�

+ ��x�,t� , �8�

where ��x� , t� is a Gaussian white noise with expectations

���x�,t�� = 0, ���x�,t���x��,t��� = 2T��x� − x�����t − t�� �9�

and H��� is of the Ginzburg-Landau-Wilson form

H��� =� dx�	1

2
��� ��2 +

1

2
r�2 +

1

4!
g�4
 , �10�

with r	0 and g�0. The system is prepared in an uncorre-
lated Gaussian initial state with expectations

���x�,0�� = 0, ���x�,0���x��,0�� = �0
−1��x� − x��� . �11�

A. Quench to TC: RG results

In the case of the quench to TC one can show, by means of
standard RG methods �4–6�, that �0

−1 is an irrelevant variable.
Thus, putting �0

−1=0, one obtains the leading scaling behav-
ior which is given by Eqs. �1� and �2� for R�t ,s�, whereas for
the correlation function one has

C�t,s� = s−bFC�t/s� , �12�

with the scaling function

FC�x� = AC�x − 1�−bx�−1fC�x� , �13�

and

b = a =
d − 2 + �

z
. �14�

As for fR�x�, the RG method allows us to fix only the large x
behavior limx→�fC�x�=1.

From Eq. �14� one has that a and b are related to the
critical exponents � and z. Therefore, according to the clas-
sification of Hohenberg and Halperin �26�, a and b take the
same value for systems belonging to the same class of uni-
versality. The problem of the universality of � has been ad-
dressed in a series of papers �23,24�. Furthermore, Godrèche
and Luck �16� have proposed that also the ratio TCAR /AC is a
universal quantity. More precisely, considering the limit fluc-
tuation dissipation ratio �2� X� defined by

X� = lim
s→�

lim
t→�

TR�t,s�
�sC�t,s�

�15�

and using Eqs. �1�, �2�, and �12�, in the quench to the critical
point one has

X� =
TCAR

AC�1 − ��
. �16�

Universality of � and TCAR /AC implies universality of X�.
Indeed, we will see that numerical results for � and X�, in the
d=4 Ising model, give the same values as in the Gaussian
model.

B. Quench to TC: The Gaussian model

The critical Gaussian model is obtained putting r=0 and
g=0 in the Hamiltonian �10�. Then, the equation of motion
�8� can be solved in Fourier space yielding

C�k�,t,s� = ���k�,t���− k�,s��

=
TC

k2 �e−k2�t−s� − e−k2�t+s�� +
e−k2�t+s�

�0
, �17�

R�k�,t,s� =
����k�,t��

�h�−� k,s�
= e−k2�t−s� �18�

with t�s. The autocorrelation function and the autoresponse
function are obtained integrating over k� the above equations.
In order to regularize the equal time behavior of C�t ,s� and
R�t ,s� one must introduce a high momentum cutoff and, for
simplicity, we choose a smooth cutoff implemented by the
multiplicative factor e−k2/�2

in Eqs. �17� and �18�. Neglecting
the last term in Eq. �17�, in order to keep only the leading
scaling behavior, one gets �27�

C�t,s� =
2TC

�d − 2��4�d/2 ��t − s + t0�1−d/2 − �t + s + t0�1−d/2� ,

�19�

R�t,s� =
1

�4�d/2 �t − s + t0�−d/2, �20�

where t0=1/�2. Notice that the specific choice of the cutoff
affects the behavior of R�t ,s� and C�t ,s� only on the time
scale t−s� t0. Taking t−s� t0, the above results are in the
scaling form of Eqs. �13� and �2� with fR�x��1, as required
by LSI, and with a=b=d /2−1, �=0, fC�x�=x−x�x−1�a�x
+1�−a. In particular, in d=4 one has

C�t,s� = ACs−1�x − 1 + t0/s�−1�x + 1 + t0/s�−1, �21�

R�t,s� = AR�t − s + t0�−2, �22�

with AC=2TC / �4�2 and 2TCAR=AC.

C. Quench to below TC: Phenomenological picture

In the case of the quench to below TC, the system evolu-
tion is characterized by the formation and subsequent growth
of compact ordered domains whose typical size increases
with the power law

L�t� � t1/z. �23�

The evolution via domain coarsening suggests �1�, for large
s, the additive form of the correlation function
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C�t,s� = Cst�t − s� + Cag�t,s� , �24�

where Cst�t−s� represents the correlation function of the
equilibrium fluctuations within an infinite domain and
Cag�t ,s� is the domain walls contribution. Analytical solu-
tions �13,16� as well as numerical results �28� confirm this
structure, with Cag�t ,s� obeying a scaling form as in Eq. �12�
and with b=0. As stated in the Introduction, the similar
structure �4� holds also for the response function with
Rag�t ,s� in the scaling form �5� and Rst�t−s� related to Cst�t
−s� by the fluctuation dissipation theorem, TRst�t−s�
=�Cst�t−s� /�s.

Numerical simulations �9,17� for the zero field cooled
magnetization ��t , tw�=tw

t R�t ,s�ds are consistent with the
additive structure �4� and with a scaling function in Eq. �5�
of the form

hR�x� = AR
x�

�x − 1 + t0/s�1−1/z+a , �25�

where AR ,a ,� , t0 are phenomenological parameters, while z
is the dynamical exponent entering Eq. �23�. Here, t0 is a
microscopic time which is negligible except when x→1. Re-
cent results �28� from the direct measurement of R�t ,s� do
support the above form of hR�x� and give a quantitative es-
timate of a, AR, and �. The physical meaning of Eq. �25�
becomes clear for short time separation t−s�s. In this case
Eqs. �5� and �25� can be rewritten as

Rag�t,s� = �I�s�Rsing�t − s� , �26�

where

Rsing�t − s� = AR�t − s + t0�−1−a+1/z �27�

and �I�s��L−1�s� is the interface density at time s. Therefore,
Rsing�t−s� represents the response of a single interface and
Eq. �26� simply means that the aging contribution in the
response is produced by the interfacial degrees of freedom.
For larger time separation t−s�s, interfaces interact with
each other and the interaction generates the term x� in Eq.
�25�. The form �25� of hR�x� is corroborated by the exact
analytical result for the d=1 Ising model with nonconserved
order parameter �11,12�, by the numerical results of the d
=1 Ising model with conserved order parameter �22� and by
the analytical results obtained with the GAF approximation
�8,9�. In Sec. IV D we will present a direct comparison be-
tween Eq. �25� and the prediction from LSI.

III. THE ALGORITHM

We consider a system of N spins on a lattice with the Ising
Hamiltonian

H = − J�
�ij�

�i� j , �28�

where the sum runs over the nearest neighbors pairs �ij� and
J�0. The time evolution is then obtained through single
spin flip dynamics with Glauber transition rates

wi���� → ����� =
1

2
	1 − �itanh�hi

W

T
�
 , �29�

where ��� and ���� are spin configurations differing only for
the value of the spin in the ith site, hi

W=J�k��k is the Weiss
field, J is the ferromagnetic coupling, and the sum is re-
stricted to the nearest neighbors of the ith site. C�t ,s� and
R�t ,s� are given by

C�t,s� =
1

N
�

i

��i�t��i�s�� �30�

and

R�t,s� = lim
�s→0

1

�sN
�

i
� ���i�t��

�hi
�

h=0
, �31�

where �i�t� is the spin in the ith site at time t and hi is an
external field acting on the ith site during the time interval
�s ,s+�s�. In the computation of R�t ,s�, we use our own
algorithm �22�, which offers higher efficiency with respect to
other methods �20,21� allowing us to compute the response
function without imposing the external field. Carrying out
the derivative in Eq. �31� we find

TR�t,s� =
1

2
lim

�s→0
	C�t,s + �s� − C�t,s�

�s
− ��i�t − �s�Bi�s��
 ,

�32�

where Bi enters the evolution of the magnetization according
to �22�

d��i�t��
dt

= �Bi�t�� . �33�

The above result is quite general and is independent of the
details of the Hamiltonian and of the transition rates. Further-
more, it can be easily generalized to the case of vector order
parameter �29�. In the case of single spin flip dynamics, one
has

Bi�t� = 2�i�t�wi���� → ��i�� �34�

with wi����→ ��i�� given in Eq. �29�.
In order to improve the signal to noise ratio, we compute

the quantity

��t,�s + 1,s�� = �
s

s+1

R�t,t��dt� �35�

which is the response to a perturbation acting in the time
window �s ,s+1�. Here and in the following we express time
in units of a Monte Carlo step. Replacing the integral in Eq.
�35� by a discrete summation on the microscopic time scale

=1/N, from Eq. �32� we obtain
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T��t,�s + 1,s�� =
1

2	C�t,s + 1� − C�t,s� −
1

N

� �
i,k=1

N

��i�t − 1/N�Bi�s + �k − 1�/N��
 .

�36�

Because of the scaling form �1� for R�t ,s�, it is easy to show
�28� that R�t ,s� coincides with ��t , �s+1,s�� up to correc-
tions of order 1 /s which, in the considered range of times,
can always be neglected. Therefore, in the simulations we
identify R�t ,s� with ��t , �s+1,s�� and the numerical results
for R�t ,s� are obtained from Eq. �36�. In all cases we take a
completely disordered initial state which, in principle, pro-
duces a correction to scaling. However, this is not detectable
in the time region explored in the simulation.

IV. NUMERICAL RESULTS

A. d=4, T=TC

We have considered a system of N=604 Ising spins on a
four dimensional hypercubic lattice quenched to the critical

temperature TC�6.68J �30�. The response and correlation
functions are then computed for four different values of s
=25,50,75,100. In all figures the error bars are smaller than
the symbols.

In order to compare with the results of the Gaussian
model given in Sec. II B, we observe that R�t ,s� in Eq. �22�
depends only on the time difference t−s. This result is repro-
duced in the numerical simulations. Indeed, plotting the
curves for different s as a function of t−s �see Fig. 1� we find
the collapse on a master curve that is well described by Eq.
�22�, with TCAR=0.35±0.02 and t0�0.1. There is a very
small difference only for short time separations t−s�1,
which can be attributed to the specific choice of a smooth
cutoff used in the integration over k� of Eq. �18�.

In Fig. 2 we compare the numerical data for C�t ,s� with
the analytical expression of Eq. �21�. The plot shows that the
quantity sC�t ,s� depends only on the ratio t /s in complete
agreement with Eq. �21�, where t0 /s can be neglected and
with AC=0.72±0.02.

Both Figs. 1 and 2 show the accuracy of the numerical
method and that the Gaussian approximation gives the cor-
rect results for C�t ,s� and R�t ,s� in d=4 and T=TC. Further-
more, according to universality, the numerical values for TC,
AR, and AC yield an amplitude ratio in agreement, within
numerical uncertainty, with the Gaussian result TCAR /AC
=1/2. No logarithmic corrections are numerically detected in
the range of times investigated, as shown in the insets of
Figs. 1 and 2.

B. d=2, T=TC

We consider a square lattice with N=10002 Ising spins
and we compute numerically the response and correlation
functions in the quench to TC�2.26918J, for five different
values of s=100,200,300,400,500. In Figs. 3 and 4 we have
plotted the quantities

gR�t,s� = �t − s�a+1�t/s�−�R�t,s� , �37�

gC�t,s� = �t − s�b�t/s�1−�C�t,s� �38�

versus t /s, with �=0.38 and a=b=0.115 taken from Ref.
�19�. We find data collapse as expected from the RG results
of Eqs. �2� and �13� which yield

FIG. 1. �Color online� R�t ,s� in the d=4 Ising model quenched
to T=TC�6.68J. The broken line is the analytical solution of the
Gaussian model �Eq. �22�� with AR=0.35/TC and t0=0.1. Inset: plot
of �t−s+ t0�2R�t ,s� showing the absence of corrections to Gaussian
behavior. The broken line indicates the constant value.

FIG. 2. �Color online� C�t ,s� in the d=4 Ising model quenched
to T=TC�6.68J. The broken line is the analytical solution of the
Gaussian model �Eq. �21�� with AC=0.72 and t0=0.1. Inset: plot of
�x−1+ t0 /s��x+1+ t0 /s�sC�t ,s� showing the absence of corrections
to Gaussian behavior. The broken line indicates the constant value.

FIG. 3. �Color online� gR�t ,s� defined in Eq. �37� with �=0.38
and a=0.115 in the d=2 Ising model quenched to T=TC

�2.26918J. The broken line is the prediction of LSI.
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gC�t,s� = ACfC�t/s�, gR�t,s� = ARfR�t/s� . �39�

Using, next, the asymptotic conditions limx→�fR�x�
=limx→�fC�x�=1 we can extract the amplitudes AC

=0.78±0.02 and AR=0.071±0.002. Lastly, from Fig. 3 we
can make a check on the LSI prediction �6� that gR�t ,s�
ought to be constant with gR�t ,s��AR. Figure 3 shows that
there is an evident deviation from LSI for x	5, while the
LSI behavior holds for x�5.

C. The limit fluctuation dissipation ratio X�

We measure X� using Eq. �16� with values for AC, TCAR,
and � estimated from the numerical data. In d=4, with �
=0, AC=0.72±0.02, and TCAR=0.35±0.02, we find X�

=0.49±0.03 in agreement with the Gaussian result X�=1/2.
This supports the idea that not only �, but also X� is univer-
sal �5,6,16�.

In d=2, we find AC=0.78±0.02, TCAR=0.161±0.001 and
taking �=0.38 from Ref. �19� we obtain X�=0.33±0.01, in
agreement with previous numerical results obtained with dif-
ferent methods �24,31� and with X�=0.30±0.05 from the
two loop 
 expansion �18�. For convenience, the numerical
values of exponents, amplitude ratio and X� in the different
processes have been collected in Table I.

D. d=2, T	TC

In the quench to below TC the behavior of the data in the
short time separation regime t−s�s allows to discriminate
between the additive and the multiplicative forms of R�t ,s�.
Expanding up to first order in �t−s� /s, in the former case
from Eqs. �4� and �5� one obtains

R�t,s� = Rst�t − s� + s−�1+a�	hR�1� + hR��1�� t − s

s
�
 �40�

while from the LSI form

RLSI�t,s� = AR�t − s�−�1+a�x� �41�

one gets

RLSI�t,s� = AR�t − s�−�1+a�	1 + �� t − s

s
�
 . �42�

Therefore, as t−s becomes small with finite s, from Eq. �40�
there remains an s dependence due to s−�1+a�hR�1�, while
from Eq. �42� there is no residual s dependence.

In order to see which of the two behaviors is actually
realized in the data, we have quenched a system of 10002

Ising spins to the temperature T=1.5J�0.69TC, taking the
wide range of s� �101,1577� and focusing on the regime t
−s�s. The numerical data are displayed in Fig. 5. Further-
more, in the inset we have plotted Eq. �41� in the same range
of s and t−s, with AR=0.01 obtained by imposing R�s
+1,s�=RLSI�s+1,s� for s=100, a=0.27 extracted from the
data for R�t ,s� �see below� and �=� /z−1−a with � /z
=0.625 �14�. The numerical data display an evident depen-
dence on s down to t−s=1, which is absent in those for
RLSI�t ,s� �note the same vertical scale�. Therefore, the LSI
form of R�t ,s� can be ruled out.

We have also extracted Rst�t−s� from the data using the
following protocol. We have let the system to evolve in con-
tact with the thermal reservoir at the temperature T=1.5J
after preparing it in a completely ordered state, for instance
all spins up. The equilibration time teq for this process is
finite and Rst�t−s� is obtained by measuring the response
function for s� teq. The data obtained in this way yield, as
expected, an exponentially decaying contribution �continu-

FIG. 4. �Color online� gC�t ,s� defined in Eq. �38� with �=0.38
and a=0.115 in the d=2 Ising model quenched to T=TC

�2.26918J. The broken line corresponds to the amplitude AC

=0.78.

TABLE I. Exponents, amplitude ratio and X� for quenches to
and to below TC. The values of a and �, in the d=2 critical quench
of the Ising model, are taken from Ref. �19�. For X�=0 in the
quench below TC see, for instance, Ref. �33�

a �
TCAR

AC
X�

Gaussian model �d−2� /2 0 1/2 1/2

Ising critical d=4 1.01±0.01 0.00±0.02 0.49±0.03 0.49±0.03

Ising critical d=2 0.115 0.38 0.20±0.01 0.33±0.01

Ising T	TC d=2 0.27±0.02 0

FIG. 5. �Color online� R�t ,s� in the quench of the Ising model to
T=1.5J below TC. Inset: plot of RLSI�t ,s� for the same values of s
and t−s. The continous line is the plot of Rst�t−s�.
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ous line in Fig. 5�, which becomes very rapidly negligible
with respect to the full R�t ,s�. Therefore, in the observed
range of s and t−s, �i� aging is well developed in the data
and is due to the Rag�t ,s� contribution in Eq. �4�, while it is
practically unobservable in the LSI and �ii� the stationary
contribution from the data decays exponentially, while in the
LSI there is a power law decay.

Next, we have extracted Rag�t ,s� via the subtraction
Rag�t ,s�=R�t ,s�−Rst�t−s� and we have made the comparison
with the fitting formula �25�, which in the short time regime
reads

Rag�t,s� = ARs−1/z�t − s + t0�−1+1/z−a	1 + O� t − s

s
�


�43�

and predicts TTI behavior if s1/zRag�t ,s� is plotted against t
−s. Indeed, this is observed in Fig. 6, where we have used
the exponent 1 /z=0.47 �32� obtained from the numerical
data for the interface density �I�s��s1/z. The curves for dif-
ferent values of s collapse on a master curve which is very
well fitted by the power law �t−s+ t0�−0.80 �broken line in
Fig. 6�. The comparison with Eq. �43�, then, gives the nu-
merical value

a = 0.27 ± 0.02 �44�

in agreement with previous results for this exponent �9,28�.
The tiny deviations from the fitting curve, observed in Fig. 6
when s is small and t−s	2, can be attributed to the absence
of a sharp separation between bulk and interface fluctuations
in this time regime. This implies that Eq. �4� is not exact for
small s and, therefore, that the aging contribution in the re-
sponse function cannot be obtained simply by subtracting
Rst�t−s� from R�t ,s�. However, this procedure becomes ex-
act for larger values of s, as demonstrated by the fast con-
vergence of the numerical data for Rag�t ,s� towards the be-
havior of Eq. �43�. Furthermore, as remarked above, the
equilibrium response Rst�t−s� is a very fast decreasing func-
tion of t−s and, when t−s�2, the condition
Rst�t ,s��R�t ,s� is fulfilled. Hence, even for small values of

s, in the time region t−s�2, one has always R�t ,s�
�Rag�t ,s� and the numerical curves follow Eq. �43�.

V. CONCLUSIONS

We have investigated the suggestion put forward in Refs.
�5,19� that LSI applies when Gaussian behavior holds, by
looking at the scaling behavior of R�t ,s� in the kinetic Ising
model with Glauber dynamics in two revealing test cases �i�
in the quench to TC with d=4, where deviations from Gauss-
ian behavior are expected to disappear and �ii� in the quench
to TC and to below TC with d=2 where, conversely, correc-
tions to Gaussian behavior are expected to become quite siz-
able. Unlike Pleimling and Gambassi, who work with an
intermediate integrated response function, we have computed
directly R�t ,s�, in the sense specified in Sec. III after Eq.
�36�, producing high precision data by means of the new
numerical algorithm of Ref. �22�. In the d=4 numerical
simulation we have not found logarithmic corrections to the
Gaussian behavior �see the insets of Figs. 1 and 2�.

Our results do confirm the conjecture that a Gaussian ap-
proximation is inherent to LSI. In the case of the d=4 critical
quench we find agreement between LSI, Gaussian behavior,
and numerical data. Instead, in the case of the critical quench
in d=2, deviations from LSI are observed, which go in the
same direction as the field theoretical calculations and previ-
ous numerical results from the global integrated response
functions. Similarly, important deviations from LSI behavior
are found in the quench to below TC. In the latter case the
data �i� are incompatible with the multiplicative form of
R�t ,s� predicted by LSI and �ii� do confirm the result a
=0.27±0.02 for the scaling exponent of Rag�t ,s�, first ob-
tained from the measurements of ��t , tw� �9�. It ought to be
mentioned that the behavior of Rag�t ,s� in the quench to be-
low TC of the d=2 Ising model has already been investigated
numerically in great detail in Ref. �28�. In that paper we have
produced evidence for the existence of a strong correction to
scaling, next to the leading term behaving as in Eq. �5�. In
the present work there has been no need to worry about the
correction to scaling, since we have focused on the time
sector with t−s	s and s sufficiently large, where the cor-
recting term is negligible �28�.

Finally, it should also be mentioned that recently Henkel
and collaborators �34,35� have proposed a more general ver-
sion of the LSI by replacing FR�x� in Eq. �1� with

FR�x� = AR�x − 1�−�1+a��x�+a�−a, �45�

where a� is the new exponent. The old LSI is contained in
the new one as the particular case corresponding to a�=a.
Fitting the numerical data for the integrated response func-
tion in the critical quench of the d=2 Ising model �14�, an
improvement over the old LSI has been obtained with a
−a�=0.187. One of the problems with the new LSI, however,
is that when a�a� the numerical improvement is obtained at
the expense of destroying quasistationarity in the short time
regime, which is required by the separation of the time scales
�1�. A detailed analysis of the new LSI is beyond the scope of

FIG. 6. �Color online� s1/zRag�t ,s� with z=0.47 for the d=2
Ising model quenched to T=1.5J below TC. The broken line repre-
sents the power law behavior �t−s+ t0�−0.80 of s1/zRag�t ,s� from Eq.
�43�.
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the present work and is deferred to a future publication. Con-
siderations similar to ours have been made by Hinrichsen
�36� in comparing numerical data with the predictions of LSI
�37� for the �1+1�-dimensional contact process.
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